
1 
 

Framing Lottery Choices 

by 

Dale O. Stahl 

Department of Economics 
University of Texas at Austin 

stahl@eco.utexas.edu 

 

February 3, 2016 

 

ABSTRACT 

 There are many ways to present lotteries to human subjects:  pie charts, vertical or 

horizontal bars, sometimes with numerical probabilities, sometimes with an indifference options.  

Unfortunately, the theories to be tested are silent on all these framing aspects.  Expected Utility 

Theory (EUT) simply assumes that the decision maker has a complete understanding of the 

feasible payoffs and their respective probabilities, and can costlessly, instantaneously and 

errorlessly evaluate each lottery.  We design and conduct an experiment which varies the 

framing of the lotteries in ways that lessen the cognitive difficulty of comparing lotteries.  We 

find that as the ease of comparing lotteries increases, choice behavior becomes more consistent 

with EUT. 
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1.  Introduction. 

 The simplest case of a decision under risk is the choice between two objective lotteries.  

Indeed, theories about decisions under risk are typically developed first for these simple cases.  

Consequently, it is natural to test proposed theories with experiments that entail such choices.  It 

is at the experimental design stage that we encounter many questions about how to present (or 

frame) the choices.1  One common design is to present a lottery in the form of a pie chart:  each 

section of the pie corresponds to a particular monetary payoff and the area of the section (as a 

percentage of the whole pie) is equal to the probability the lottery will yield that payoff.  For a 

choice task, two pie charts are displayed on a computer screen side-by-side.  Usually colors or 

distinctive shadings are used for specific payoffs.  Sometimes, the numerical probabilities are 

listed below the pie chart.  The choice screen also displays buttons to click (or keys to press) to 

make a choice.  Sometimes an option of indifference is also available.2 

 Unfortunately, the theories to be tested are silent on all these framing aspects.  For 

instance, Expected Utility Theory simply assumes that the decision maker has a complete 

understanding of the lotteries (i.e. the feasible payoffs and their respective probabilities), and can 

costlessly, instantaneously and errorlessly evaluate each lottery.  We do not have to be very 

cynical to question whether human subjects satisfy this auxiliary assumption in experiments 

when lotteries are presented as pie charts.  Without numerical probabilities it is not easy to 

accurately assess the relative areas of the pie sections, and comparisons across the lotteries can 

be difficult due to the rotational orientation of the pies.  Computing expected monetary values, 

let alone expected utilities, can be challenging to typical human subjects.  Furthermore, the 

subjects almost surely have no experience with this specific or similar decision task, so they will 

not have a conceptual framework or useful heuristics to help them make the decision.  They will 

find themselves in a situation similar to arriving in a foreign country with no knowledge of the 

local language and having to answer a question by the local customs official.   

                                                 
1 See Harrison and Rutström (2008) for a review of designs. 
 
2 E.g. Hey and Orme (1994) and Harrison and Rutström (2009). 
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One of the main roles of college economics courses is to provide students with new 

concepts and a vocabulary to analyze economic choices.  Therefore, we must recognize that 

lottery choice experiments test the joint hypotheses of an idealized theory and a complete and 

accurate understanding of the task and consequences by the subjects.  When the latter 

“understanding” hypothesis is unlikely to hold, observations at odds with the joint hypotheses do 

not logically imply that the theory is false. 

 Fortunately there are ways to exogenously vary the veracity of the understanding 

hypothesis, thereby partially unravelling the cause of the observed behavior.  Specifically, we 

can change the presentation of the lotteries in ways that make the comparisons easier for the 

subjects.  In this paper we report results from three presentation treatments.  We start with a 

treatment that is similar to the standard framing to serve as a benchmark.  The second treatment 

is essentially a rearrangement of the computer display that we believe makes it visually easier to 

compare the lotteries.  The third treatment adds statements of facts about differences between the 

lotteries.  To rule out learning across treatments, a subject participated in only one treatment.  

We find that each successive treatment results in less risk-averse behavior and an increase in 

risk-neutral behavior. 

 We also want to infer any change in the proportion of the subjects who behave 

consistently with EUT.  For this purpose, we estimate a two-parameter logistic choice function in 

which one parameter is for the utility function and the second parameter is for the precision.  The 

lower the estimated precision, the more inconsistencies with EUT.  We find a monotonic 

increase in the average precision, indicating fewer inconsistencies with EUT with the latter 

treatments. 

 We believe it is important to recognize the heterogeneity in behavior in the subject 

population.  Accordingly, we characterize the heterogeneity using a Bayesian method to estimate 

the distribution of the two parameters in the subject population (by treatment).  Using this 

method, we estimate a dramatic increase in the proportion of the population that is behaviorally 

indistinguishable from risk-neutrality (i.e. maximize expected monetary value) from 12% to 

45%.  We also find no evidence of systematic “fanning-out”. 
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 Section 2 presents the experimental design.  Section 3 presents the analysis of the data.  

Section 4 concludes with a discussion. 

 

2.  The Experimental Design. 

 We will first describe the lotteries that were used, and second the treatments.  To avoid 

confounding effects from complicated lotteries, we chose lotteries with three possible outcomes: 

$5, $25, and $45.  The lowest payoff was $5 instead of $0 to avoid the psychological effect of 

$0.  This choice allows us to specify the utility function with just one parameter, such that U($5) 

= 0, U($45) = 1, and U($25) = u.  Further, u = 0.5 represents risk neutrality.  With three possible 

outcomes, lotteries can be represented as points in a Machina (1982) triangle.  Figure 1 displays 

a Machina triangle with the lottery pairs shown as a line connecting two points (lotteries).  For 

each pair, the one closest to the origin is the “safe” lottery, and the one closest to the diagonal 

boundary is the “risky” lottery.  EUT implies that all indifference curves have slope u/(1-u).  

Whether EUT predicts choice of the safe or risky lottery depends solely u/(1-u).  If the slope is 

less than u/(1-u), EUT predicts choice of the safe lottery, and if the slope is greater than u/(1-u), 

EUT predicts choice of the risky lottery.  Since u can vary by subjects, we want to have lottery 

pairs with a variety of slopes.  The slopes in our lottery pairs range from 0.5 to 4.0. 

 To maximize the monetary incentive of each choice, we choose lotteries close to the safe 

origin and the diagonal boundary.  The difference in the expected monetary value of the pairs 

ranged from $0 to $3, with an average of $2. 

 Also to maximize the monetary incentive of each choice within our budget, we used 15 

choices.  While only 15 choices would be inadequate for some purposes, it suffices for our 

purpose.  Moreover, there is a reasonable variety of pairs and instances of identical slopes to test 

for the EUT implication of parallel indifference curves. 
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    Figure 1.  Lottery Pairs 

 

All three treatments use sectioned horizontal bars to represent the lotteries with the 

sections ordered by increasing payoff.  The $5 section was always colored pink; the $25 section 

was always colored yellow; and the $45 section was always colored blue.  The length of each 

section as a proportion of the whole bar was exactly equal to the lottery’s probability of the 

associated payoff.   

  Figure 2.  Representation of a Lottery 

 

The implementation of a lottery was described and carried out as follows.  Two ten-sided 

dice are thrown: one blue die and one red die.  The blue die counts 10s and the red die counts 1s.  

If the blue die is 6 and the red die is 3, the dice number is 63.  All dice numbers from 00 to 99 

are equally likely.  Let pi (i = 5, 25, 45) denote the probability the lottery will yield payoff $5, 
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$25 and $45 respectively.  If the dice number is less than p5, then the lottery will yield $5;  if the 

dice number is greater than p5 but less than p5+p25, then the lottery will yield $25; if the dice 

number is greater than p5+p25, then the lottery will yield $45.  We argue that this description and 

presentation is at least as understandable as the pie chart alternative. 

 In the first treatment, two lotteries are displayed as side-by-side horizontal bars, 

comparable to side-by-side pie charts.  Full instructions for each treatment are provided in 

Appendices A-C.  

  In the second treatment, the horizontal bars are displayed one above the other.  In 

addition each bar has a ruler line that runs from 00 to 99 corresponding to the possible dice 

numbers.  In our opinion, it is much easier to compare the two lotteries in this stacked display.3 

For example, if lottery A pays $5 with probability 15%, and lottery B pays $5 with probability 

25%, then it is fairly easy to see that both lotteries will pay $5 for all dice numbers from 00 to 

14, and B will pay $20 more than A for  dice number from 15 to 24.  However, not all subjects 

may notice this, so we display these facts in a statement on the choice screen.   

It is possible that not all subjects recognize the usefulness of these facts.  Therefore, we 

designed a third treatment in which the instructions focus the subjects attention on these facts via 

a short quiz, as well as also including in the Instructions4 a statement of the form: “because 

lottery A will pay $20 more than B for 35 dice numbers, and pay $20 less than B for 20 dice 

numbers, on average A will pay more than B.”  Obviously this additional statement is equivalent 

to informing the subjects about which lottery has the highest expected monetary value, but it 

does not suggest that maximizing expected monetary value is the right choice.5  All subjects are 

free to consider the riskiness of each lottery.  Indeed, risky lotteries stand out visually because 

the $25 payoff for a risky lottery corresponds to a much shorter (yellow) section of the bar.  This 

visual saliency of the risk could discourage other comparisons.  Moreover, the “understanding” 

                                                 
3 Camerer (1989), and Wakker, Erev and Webber (1994) utilized a similar display. 
 
4 This statement is not displayed on the choice screens (see Appendix C). 
5 Harrison and Rutström (2008) report that providing subjects with the expected monetary value of each lottery 
induces a sharp reduction in the estimated risk aversion. 
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hypothesis assumes that all subjects know the difference in expected monetary value. We argue 

that this third treatment makes the “understanding” hypothesis more likely to hold. 

Forty subjects participated in each treatment.  The subjects were recruited from the 

general population of students at the University of Texas at Austin; however, graduate students 

in economics were not allowed to participate.  An individual subject sat at a computer screen, 

read the instructions and made choices at their own pace.  The experiment took from 10 to 30 

minutes, and the average payoff was $25. 

 

3.  Analysis of the Data. 

 a.  Aggregate Percentage of Risky Choices 

 A central hypothesis is that the proportion of risky lottery choices should increase with 

the slope (p45/p5) of the pair.  Further, we expect the proportion also to increase with the 

treatment.  Figure 3 displays the relevant aggregate data. In the legend, “Tn” stands for 

“Treatment n”. 

    Figure 3.  Percent Risky Lottery Choices 
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Visually the data is consistent with our hypotheses for slopes greater than 1. That is, the 

curves are mostly upward sloping and each successive treatment shifts the curves upward for 

slopes greater than 1.  A 3-by-12 ANOVA shows that the visual result is statistically significant 

at all common confidence levels.  Detailed analysis of the treatment effect reveals that while the 

change from treatment 1 to treatment 3 is statistically significant, the change from treatment 1 to 

treatment 2 is not statistically significant at the 10% level.  Since a EUT subject who is not risk-

loving will never choose a risky lottery when the slope is less than 1, the lack of any effect in this 

region can be attributed to the lack of risk-lovers in the subject pool. 

 b. Mapping Behavior to EUT Model. 

 The next question we want to address is how the framing treatment affects the likelihood 

that subjects behave according to EUT.  Our first step is to map the observed behavior into a 

distribution over the two parameters of a simple logistic EUT model.  Letting u  U($25), the 

expected utility of a generic lottery is 

  EU(p|u)  i{5,25,45} piUi = p45 + (1- p5 – p45)u.        (1) 

Thus, given two lotteries pA and pB, the difference in expected utility is 

 

  EUA,B(u)    EU(pA|u) - EU(pB|u) = (1-u)p45 - up5 ,       (2) 

 

where p45 = )pp( B
45

A
45  , etc. 

Letting  be the precision of the logistic choice, the probability of choosing lottery pA over pB is 

 

   P(u, )   1/[1 + exp{-EUA,B(u)}] .         (3) 
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Obviously, the probability of choosing lottery pB over pA is 1 - P(u, ). 

 Given a subject’s 15 choices, we can calculate the likelihood of those choices as a 

function of (u, ) by computing the product of the probabilities for each choice.  Provided we are 

willing to assume a prior on (u, ), we can compute a Bayesian posterior distribution on (u, ).  In 

other words, we can map the behavior into a distribution on parameters of the logistic EUT   

model. 

 Moreover, assuming the subjects are random draws from a common subject pool, we can 

refine the posterior distribution.  Adopting the method of Stahl (2014, 2015), briefly described in 

Appendix D, we compute the posterior distribution of (u, ) for the population of subjects for 

each treatment.  Figure 3 displays the results. 
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Figure 3.  Population Distribution of (u, ) by Treatment 

 

 

 (a) Treatment 1 

 

0.5

0.613

0.725

0.838
0.95

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

0

0
.0
7
5

0
.1
5

0
.2
2
5

0
.3

0
.3
7
5

0
.4
5

0
.5
2
5

0
.6

0
.6
7
5

0
.7
5

0
.8
2
5

0
.9

0
.9
7
5

p()

u

0.5

0.613

0.725

0.838

0.95

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0

0
.0
7
5

0
.1
5

0
.2
2
5

0
.3

0
.3
7
5

0
.4
5

0
.5
2
5

0
.6

0
.6
7
5

0
.7
5

0
.8
2
5

0
.9

0
.9
7
5

p()

u



11 
 

 (b) Treatment 2 

 

 (c) Treatment 3 

 

The vertical scales are the same for all three graphs to facilitate comparisons.  Instead of  

on the depth axis, we plot p()  1/[1 + exp(-0.05)], which translates  into the behavioral 

probability that an option with a 5% greater value will be chosen. 

The visual differences between these graphs is dramatic.  With treatment 1, the posterior 

is diffuse and spread over low precisions and u > 0.5, which is consistent with the common 

finding that subjects appear to be risk averse and that EUT does not fit behavior well.  Moving to  

treatment 2, we see a decrease in high values of u (risk-aversion) and two small spikes at high 

precisions.  This observation suggests that the stacked bars did facilitate comparisons for some 

subjects thereby increasing their consistency. 
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With treatment 3, we see a dramatic spike near u = 0.5 and p = 1, which represents the 

risk-neutral EU maximizer.  We also observe a further decrease in the spread over u.  Table 1 

shows the mean and standard deviation of the distribution by treatment. 

 Table 1.  Mean and Standard Deviation by Treatment 

 Treatment 1 Treatment 2 Treatment 3 

u 0.707 (0.161) 0.658 (0.122) 0.606 (0.126) 

p() 0.736 (0.112) 0.761 (0.120) 0.806 (0.124) 

 

Clearly the mean u decreases and the mean p() increases with the treatment. 

 c.  Shifts in Probability Mass by Treatment. 

 Our next objective is to use the posterior distributions to discern the shift in probability 

mass towards the risk-neutral EUT model with treatment.  To do this, we need the concept of 

behaviorally distinguishable parameters.  To assess whether our data (xi) was generated by (u, ) 

or (u, ), we typically compute the log-likelihood ratio (LLR):  ln[f(xi | u, )/f(xi | u, )].  

However, it is well-known that likelihood-ratio tests are subject to type-I and type-II errors.  We 

define (u, ) to be behaviorally indistinguishable from  (u, ), if either of the type-I and type-II 

error rates6 exceed 10%, and to be behaviorally distinguishable if both of the type-I and type-II 

error rates are less than or equal to 10%. 

To begin, we want to know what percent of the population is behaviorally 

indistinguishable from 50:50 random choices (hereafter referred to as Level-0 or L0 behavior).  

Since the latter entails the simple restriction that  = 0, we can compute whether (u, ) is 

behaviorally indistinguishable from (u, 0), and then integrate the posterior over all the points (u, 

) that are behaviorally indistinguishable from (u, 0).  We do this for each treatment and report 

the results in the first row of Table 2.  It is curious that Treatment 2 produces the largest mass of 

Level-0 behavior.  One possible explanation is that there was some learning by doing (even 

                                                 
6 These rates can be computed exactly since there are only 215 possible 15-tuples of choice data for an individual 
subject.  For details, see Stahl (2014, 2015). 
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without feedback) which manifests itself as inconsistent behavior, whereas the quiz in Treatment 

3 induced similar learning before the choices were made. 

  Table 2.  Posterior Probability of Hypotheses 

 Treatment 1 Treatment 2 Treatment 3 

Level-0 0.154 0.251 0.143 

Not L0 

& u=0.5 
0.304 0.437 0.656 

Not L0 

& u0.5 
0.542 0.312 0.201 

EMV* 0.119 0.145 0.447 

 

The second computation of interest is the probability mass that is behaviorally 

distinguishable from Level-0 but indistinguishable from risk-neutrality: i.e. the integral of the 

posterior over all the points (u, ) that are behaviorally indistinguishable from (0.5, ).  These 

results are reported in the second row of Table 2.  Clearly, Treatment 3 more than doubles the 

amount of risk-neutral behavior.  The third row of Table 2 is calculated as 1.0 minus the sum of 

the first two rows.  Thus, the numbers in this row are the probability mass that is behaviorally 

distinguishable from Level=0 and behaviorally distinguishable from risk-neutrality.  This mass 

decreases substantially from treatment 1 to treatment 3. 

The third and final computation of interest is the probability mass that is behaviorally 

indistinguishable from very precise maximization of EMV: i.e. the integral of the posterior over 

all the points (u, ) that are behaviorally distinguishable from Level=0 but behaviorally 

indistinguishable from (0.5, 138)7.  These results are reported in the fourth row of Table 2.  

Clearly, Treatment 3 produces the largest mass of very precise maximization of EMV.  

Moreover, the proportions of those who are risk neutral but not Level-0 (second row of Table 2), 

and who are very precise (fourth row) by treatment are 0.391, 0.332 and 0.681 respectively.8  In 

                                                 
7 p(138) = 0.999, so choosing the inferior lottery when the difference in expected value is 5% would happen only 1 
out of 1000 times;  hence, we consider this very high precision. 
 
8 Row 4 divided by row 2. 
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other words, Treatment 3 also produces a significant increase in the precision of the risk-neutral 

types. 

 

d.  Common Ratio Tests. 

In the design there are three p45/p5 slope values that occurred twice: (3, 2 and 0.5).  

One occurrence entailed lottery pairs that were in the northwest area of Figure1, and the other 

entailed lottery pairs that were in the southeast area of Figure 1.  These pairs allow us to test the 

“common ratio” implication of EUT: that the choices in each occurrence with a common slope 

should be both risky or both safe.  The Allais paradox is the classic example of failure of this 

prediction.  In the Allais paradox, one lottery pair is in the northwest area of Figure 1 and the 

other pair is in the southeast area.  The typical finding is that subjects choose the safe lottery 

from the northwest pair and the risky lottery from the southeast pair.  This behavior suggests a 

“fanning out” of the indifference curves such that U($25) is larger for the northwest pair than for 

the southwest pair, as if subjects were more risk averse when the expected value is high.9  Table 

3 displays the number of switches from safe to risky (S to R) and vice versa. 

   Table 3.  Common Ratio Results 

 Treatment 1 Treatment 2 Treatment 3 

S to R 22 18 9 

R to S 23 13 11 

Total 45 31 20 

% EUT 62.5 74.2 83.3 

 

Since EUT predicts no switching (although the logistic choice model allows switching as 

an idiosyncratic error), the total number of switches (out of 120 possible) indicates the possible 

violations of EUT.  The number of switches decreases with treatment, and with Treatment 3, 

83.3% of all choices are consistent with EUT (i.e. no switches).   Curiously, we find essentially 

                                                 
9 See Machina (1982, 1987). 
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the same number of R to S switches as S to R switches.  Thus, the fanning out hypothesis is no 

more likely than the contrary fanning in hypothesis.  It seems more plausible that these switches 

are idiosyncratic errors rather than a manifestation of non-EUT preferences.  These findings are 

consistent with Kagel, et al. (1990). 

 

4.  Conclusions. 

 We designed three presentation treatments for binary lottery experiments.  The treatments 

systematically increased ease of comparing the lotteries.  As anticipated, with increased ease of 

comparison, behavior became more consistent with EUT.  More risky choices were made, and 

the mean measure of risk-aversion decreased from 0.7 to 0.6.  Further, behavior became more 

precise, which can be interpreted as the influence of the fundamentals increasing relative to 

idiosyncratic features, inattention or noise.  Moreover, the proportion of behavior that was 

consistent with maximizing expected monetary value went from 12% to 45%.  Finally, we found 

no evidence for the fanning out hypothesis that is used to explain the Alais paradox. 

 Clearly, framing effects are significant.  Therefore, observed behavior that appears to be 

inconsistent with EUT may actually be driven by obscure framing of the choice.  Of course, 

outside the laboratory, choices are often obscurely framed, so it would be premature to predict 

EUT behavior for those choices.  On the other hand, when stakes are high and experience has 

provided useful tools of comparison, EUT may perform well. 
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APPENDIX A – Instructions for Treatment 1 

Pg 1:       Welcome. 

This is an experiment about economic decision making in which you are 

asked to make 15 choices.  Each choice will be between two assets whose dollar 

returns have different levels of uncertainty.  You may take as much time as you 

need to make your 15 choices.  After you have made your choices, the uncertainty 

about the return to the assets you chose will be resolved by the roll of dice.  When 

you conclude, you will be paid in cash an amount that depends on the choices you 

made, and on the outcomes of the dice rolls.  Earnings can range from $5 to $45. 

Pg 2:  

 

Pg 3:  
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Pg 4:  
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Pg 5: 

 

 

Pg 6: 
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Pg 7: 
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Pg 8: 
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APPENDIX B – Instructions for Treatment 2 

Pages 1-2 are the same as in Treatment 1. 

Pg 3: 

 

Pg 4: 

 

Pg 5: 

 



7 
 

Demo Screen: 

 

Pg 6: 

 

Pg 7: 
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APPENDIX C – Instructions for Treatment 3 

Page 1 is the same as in Treatments 1 and 2. 

Pg 2:  

 

Pg 3: 
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Pg 4: 

 

Pg 5: 

 

Pg 6: 
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Pg 7: 
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Pg 8: 

 

 

Demo Screen: 

 

Pg 9: 
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Pg 10: 

 

 



APPENDIX D:  Method Used to Produce Figure 3. 

 

 Let xi denote the choice data for subject i, and let f(xi | ) denote the probability of xi 

given parameter vector   (, u).  Given a prior g0 on , by Bayes rule, the posterior on  is 

   g( | xi)    f(xi | )g0()/f(xi | z)g0(z)dz.       (D1) 

However, eq(D1) does not use information from the other subjects even though those subjects 

were randomly drawn from a common subject pool.  Let N be the number of subjects in the data 

set.  When considering subject i, it is reasonable to use as a prior, not g0, but 

   gi()      ih1N

1
g( | xh)          (D2) 

In other words, having observed N-1 subjects, gi() is the probability that the Nth random draw 

from the subject pool will have parameter vector .  We then compute 

   iĝ ( | x)    f(xi | )gi()/f(xi | z)gi(z)dz ,        (D3) 

where x denotes the entire N-subject data set.  Finally, we aggregate these posteriors to obtain 

   g*( | x)    
N

1i i )x|(ĝ
N

1
.          (D4) 

We can interpret g*( | x) as the probability density that a random draw from the subject pool 

will have parameter vector .  

 When implementing this method we specified the prior g0 as follows.  For the logit 

precision parameter, we specify  = 20ln[p/(1-p)] with p uniform on [0, 0.999].  In this 

formulation, p can be interpreted as the probability an option with a 5% greater value will be 

chosen.  u is uniform on [0, 1].  These two distributions are assumed to be independent. For 

computations, we used a grid of 41x41points.   
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